News

Small-molecule autocatalysis drives compartment growth, competition and reproduction

With the decisive participation of Eörs Szathmáry, Member of the HAS and Research Professor at the Institute of Evolution of the Centre for Ecological Research, an international team of researchers has achieved a major new breakthrough in the study of the origin of life. The paper was published in Nature Chemistry, one of the world’s leading chemistry journals.

Eörs Szathmáry Photo: HAS/Tamás Szigeti

The discipline of systems chemistry deals with the analysis and synthesis of various autocatalytic systems and is therefore closely related to the study of the origin of life, since it investigates systems that can be considered as a transition between chemical and biological evolution: more complex than simple molecules, but simpler than living cells.

Tibor Gánti described the theory of self-replicating microspheres as early as 1978. These still lacked genetic material, but concealed within their membranes an autocatalytic metabolic network of small molecules, isolated (compartmentalised) within their membranes. As the autocatalytic process takes place, the membrane-building material is also produced, leading to the division of the sphere. This system may appear to be a living cell, and although it lacks genetic material, this can only be verified experimentally. These microspheres can be considered as ‘infrabiological’ chemical systems, since they do not reach the level of biological organisation, but they exceed the complexity of normal chemical reactions.

Tibor Gánti / Painting by László Gulyás

Years ago, we started to think about the possibility of experimentally realising the process whereby the growth of a small molecule metabolic network leads to the growth of the compartments that enclose the network, to the effect that they can divide. Already Tibor Gánti has described that one of the most promising candidates for this system is the formose reaction, an autocatalytic sugar-producing reaction that consumes formaldehyde and involves the circular transformation and propagation of glycolaldehyde molecules. The reaction does not require enzymes.
The experiment on which the study is based was carried out in the biochemistry laboratory of the École Supérieure de Physique et de Chimie Industrielles (ESPCI) in Paris by Professor Andrew Griffiths and his colleagues. The experiment involved creating tiny water droplets in an oil medium that did not fuse and therefore acted as artificial cells. Some of the ‘cells’ were given glycolaldehyde as an autocatalyst (in addition to formaldehyde as a nutrient), others were not. In the former group, the formose reaction was triggered and, by osmosis, it sucked water away from compartments that did not contain glycolaldehyde. This allowed them to grow and to divide under external influence. Many researchers have suggested that before the emergence of regulated cell division, the initial cells divided in response to external influences such as turbulent flow.

The significance of this study is that we are the first in the world to show that the operation of a network of small-molecule autocatalytic reactions, without genetic material and enzymes, leads to the growth and division of compartments, i.e. the formation of new generations. This has never been demonstrated before, so the result is fundamental to the experimental verification of the principles of systems chemistry and points the way forward in the study of the origin of life.

About:

Szathmáry Eörs evolúcióbiológus, az MTA rendes tagja, az MTA Fenntartható Fejlődés Elnöki Bizottság elnöke. Kutatásai során az élet keletkezésétől kezdve az emberi nyelvkészség kialakulásáig számos evolúciós folyamatot vizsgált és modellezett. John Maynard Smithszel közösen írt könyvét, az Az evolúció nagy lépéseit a modern evolúcióbiológia alapműveként tartják számon.

Other publications on this topic:

News

The first aquatic ecology experiment is launched at the experimental site of the Centre for Ecological Research in Vácrátót

The Institute of Ecology and Botany and the Institute of Aquatic Ecology have been working together to establish new experimental infrastructure in Vácrátót. In parallel with the greenhouse experimental system, two mesocosm infrastructures are also being established, which will be used for short- and long-term experiments. The first of these, called the CER Mesocosms has been completed and is already hosting the first experiment, in which researchers from the Institute of Aquatic Ecology are investigating the combined effects of climate change (heat waves) and fragmentation as part of an OTKA project.

Establishment of simplified experimental ecosystems (mesocosms) in the experimental area

The Transnational Access programme of the H2020 AQUACOSM-plus project has provided the opportunity for a group of international researchers and trainees to participate in the experiment. The main objective of the programme, in addition to provide networking possibilities between researchers, is to create opportunities for students and young researchers to become familiar with the tools of experimental aquatic ecology and to gain practical experience through active participation in mesocosm experiments at the project partners’ sites. The Centre for Ecological Research will thus host a total of 10 international guests from Greece, Serbia, Spain, the UK, Chile, Uruguay, who will be joined by an Erasmus+ student from Turkey and several Hungarian university trainees over the next two months.

The CER Mesocosms (together with the Hungarian Pond Network, which is still under construction) is recognized as “Emerging Research Infrastructure” by the National Research, Development and Innovation Office (NKFIH)

News

Continuous precipitation loss causes severe damage to the diatom assemblages in large rivers

The researchers of the Functional Algology Research Group, operating at the Tisza Research Department of the Institute of Aquatic Ecology of the ELKH Centre for Ecological Research (CER), in collaboration with experts from the Department of Environment, Nature Protection and Waste Management of the Győr-Moson-Sopron County Government Office, investigated whether one-off drought events and trend-like precipitation decrease result in similar changes in the composition of diatom assemblages of the Rába River, one of the largest rivers in Hungary. The results clearly highlighted that the continuous decrease in annual precipitation has a much more significant impact on the composition and biodiversity than a single dry year. The paper presenting the research was published in the prestigious scientific journal Ecological Indicators.

Weather extremes and the impact of drought are immediately noticeable, for example, in agricultural areas or forests, and although perhaps less perceptible, they also have significant consequences for the ecosystems of rivers.

Reimeria sinuata: one of the diatom species indicating the effects of drought in the Rába River

The researchers of the Functional Algology Research Group, operating at the Tisza Research Department of the Institute of Aquatic Ecology of the ELKH Centre for Ecological Research (CER), in collaboration with experts from the Department of Environment, Nature Protection and Waste Management of the Győr-Moson-Sopron County Government Office, investigated the long-term changes in the composition of the benthic diatom assemblage of the Rába River.

The Rába is the third largest river in Hungary and the most important domestic tributary of the Danube. Over the past five years, environmental protection experts have observed a significant decrease in precipitation within its catchment area. They applied to CER researchers with the observation that the trend-like, continuous decrease in precipitation likely affects the composition of the benthic diatom assemblages.

During the joint work, they sought to find the answer to whether one-off drought events and trend-like precipitation decrease result in similar changes in the composition of the river’s benthic diatom assemblages. It has been shown in other ecosystems that the resilience of the assemblages can vary depending on whether drought occurs regularly, for extended periods, or only intermittently.

Maintaining the good condition of our rivers and reducing harmful effects, such as nutrient load, are important societal interests. The legal framework for this is determined by the EU Water Framework Directive, which Hungary also follows. In order to characterize and monitor the ecological status of our surface watercourses, experts regularly monitor the river ecosystems, in which benthic diatoms play a key role. These tiny organisms have a significant function in the food web and primary production.

Although microscopic in size, the biofilm they create is visible to the naked eye and can be felt, for example, on the steps of beaches, on rocks, and on shoreline and aquatic plants. Perhaps few people are aware of the wonders hidden within this film. When magnified, it reveals a micro-world resembling a small forest, where, similar to the ground level of a forest, there are species adhering on the surface, often very small, as well as prominent, branching species that resemble trees. Just as forests, the biofilm is also shaped by the environment. The number of species and individuals present, as well as the species with specific characteristics that can occur in a given biofilm, greatly depend on the influences affecting the water. Besides nutrient load, other threatening factors such as the increase in pharmaceutical residues, rising water temperature, changes in water residence time, drastic decrease in water level and flow, or the receding of flash floods significantly influence the composition of this tiny forest. Ultimately, this will also have an impact on higher taxonomic groups, such as aquatic invertebrates and fish,” said Viktória B-Béres, one of the lead authors of the study.

In order to understand these processes, the analysis and evaluation of long-term datasets are of paramount importance. For the investigation, the authors of the study utilized datasets available for the Rába River, covering a period of fifteen years. The period from 2007 to 2021 was divided into two groups based on annual precipitation. Between 2007 and 2016, fluctuating years of both drier and wetter conditions alternated, while from 2017 onwards, consistently decreasing annual precipitation was characteristic.

“Our results showed that one-off dry events had little influence on the composition and biological diversity of benthic diatom assemblages. In contrast, continuously decreasing precipitation ‒ dry periods ‒ significantly reduced species-level and functional diversities, the latter based on individual characteristics. Using the previous analogy, it was as if our tiny forest transformed into a barren landscape. Small-sized species that strongly adhere to the substrate, such as Amphora pediculus and Reimeria sinuata, became dominant, while the proportion of larger tree-like species decreased significantly. This is problematic because this type of algae plays an important role in the river’s food web as a food source for snails and macroinvertebrates. Therefore, their absence or decline in population size can have detrimental effects on the larger organisms inhabiting the river,” added Viktória B-Béres.

In a recently published study, researchers analyzed for the first time the differences in the effects between one-off dry weather events and trend-like changes in precipitation on the benthic diatom assemblages of a large river. The results clearly highlighted that the continuous decrease in annual precipitation has a much more significant impact on the composition and biodiversity than a single dry year. Climate scenarios project extreme water balance conditions in the near future, including longer periods of low precipitation. Therefore, any knowledge that can predict changes in the microscopic river ecosystems can assist in the development of action plans by authorities to preserve the functional and structural characteristics of riverine ecosystems, and thus maintain the ecosystem services provided by benthic algal assemblages. The study indirectly draws attention to the vulnerability of even large, perennial riverine ecosystems during dry periods, emphasizing the importance of responsible water management. The researchers are asking the public to report any incidents of extraordinary water pollution, untreated wastewater discharge, shoreline littering, or large amounts of mussel or fish carcasses to the environmental protection departments of e.g. the Győr-Moson-Sopron County or Hajdú-Bihar County Government Offices.

Photo: Sampling from the Rába River

Publication:

Zsuzsanna Nemes-Kókai, Krisztián Kovács, Gábor Borics, Rezső Mayer, Zoltán Novák, Ákos Gábor Robotka, Júlia József, Károly Érczes, Áron Lukács, Viktória B-Béres (2023). Continuous precipitation loss induced more pronounced compositional and diversity changes in the lotic phytobenthos than one-off drought events. Ecological Indicators, Volume 148, 2023. 110051, ISSN 1470-160X. DOI: 10.1016/j.ecolind.2023.110051.

News

CER research group examines possibilities to prevent animal-vehicle collisions focusing on human factors

The members of the ‘Lendület’ Seed Ecology Research Group of the ELKH Centre for Ecological Research (CER) examined the human factors behind animal-vehicle collisions through a questionnaire survey. The researchers pointed out that there are significant correlations between the frequency of collisions, driver attitudes, and driving habits. The paper presenting the results was published in the Journal of Environmental Management.

The rapidly developing road network places a significant burden on terrestrial ecosystems, increasing the number and severity of conflicts between humans and wildlife, which are most often manifested in animal-vehicle collisions. Collisions with animals raise serious problems from both a conservation and traffic safety perspective. If we want to express this in numbers, it can be said that hundreds of millions of vertebrate animals are victims of vehicle collisions worldwide every year. This results in significant financial damage and personal injury. The problem is not new, researchers have been aware of it for decades, and numerous studies have been conducted. Most of these were based on field surveys. With their help, a list of affected species was compiled, conservation damage estimated, and “hotspots” identified, i.e., road sections where the frequency of collisions is higher than average.

“Our research is novel in that it targets the social strata traveling on the road, so it captures the problem from the other end. The experience and opinions of drivers contain a lot of useful information for accident prevention, which can be collected and evaluated in this way,” explained Sándor Borza, one of the first authors of the article, a PhD student in the Cooperative Doctoral Program.

It is very important to consider how interested the affected social stratum is in the topic, how conservation or financial damage affects them, and what solutions they consider good or acceptable to reduce the problem.

“Many people were interested in the survey, a total of 2123 people completed our questionnaire, which is an outstanding number worldwide!” emphasized Sándor Borza. “We were curious about what animals drivers had hit during their lifetime, whether they had suffered financial damage, and, most importantly, whether their driving habits and attitudes affected the likelihood of collision.”

The researchers found that nearly half of drivers have had at least one collision with an animal during their lifetime and one in four drivers suffered property damage as a result. Male drivers, drivers who cover longer distances annually, use secondary roads more frequently, and drive larger vehicles were more likely to collide with animals. However, driving style, whether someone drives slower or more dynamically, did not affect the likelihood of an animal-vehicle collision. “This does not mean that the two things are not related at all, as research supports that at certain speeds, it is not possible to slow down enough to avoid a collision,” added Sándor Borza. The drivers’ attitude towards the importance of nature conservation and traffic safety in relation to animal-vehicle collisions was significantly influenced by whether they had hit something before in their lives. More than a third of drivers shared their opinions on possible ways to improve traffic safety. The most popular form of action was the installation of protective devices (wildlife fences, wildlife crossings), but many also pointed out the usefulness of warning signs and the greater responsibility of hunting associations, including control of the number of large game animals.

News

Réka Kiss among the winners of the HAS Environmental Science Youth Prize

The Environmental Science Youth Prize was established in 2010 to recognise the achievements of young scientists in the field of environmental research. The awards were presented by Eörs Szathmáry, Chairman of the Presidential Committee on Sustainable Development of the Hungarian Academy of Sciences on 12 June 2023 at the HAS Headquarters in Budapest. Réka Kiss, researcher at the Centre for Ecological Research ‘Lendület’ Seed Ecology Research Group, is one of the 2023 winners.

Réka Kiss was awarded the prize for her research on the development and testing of grassland restoration methods and increasing the biodiversity of grassland vegetation. In their research, Réka and her colleagues aimed to create species-rich grasslands with the lowest possible energy and cost inputs. The grasslands were created using grass seeds and a diverse seed mix of forb species. They were looking for the time window in the sowing of the two mixtures when the most species-rich grasslands could be established with the least energy and cost investment. The results of the research underline the fact that the higher amount of labour invested in the early stages of grassland reconstruction pays off: simultaneous sowing results in the highest species richness, the most successful establishment of sown forb species and the lowest weed infestation rates. This is therefore the most cost-effective method of the options considered, while later, non-coordinated sowings are less effective and require additional interventions.

Recent publications related to the award

Kiss, R., Deák, B., Tóth, K., Lukács, K., Rádai, Z., Kelemen, A., Miglécz, T., Tóth, Á., Godó, L., Valkó, O. (2022): Co-seeding grasses and forbs supports restoration of species-rich grasslands and improves weed control in ex-arable land. Scientific Reports 12: 21239. https://doi-org/10.1038/s41598-022-25837-4

Kiss, R., Deák, B., Tóthmérész, B., Miglécz, T., Tóth, K., Török, P., Lukács, K., Godó, L., Körmöczi, Zs., Radócz, Sz., Kelemen, A., Sonkoly, J., Kirmer, A., Tischew, S., Švamberková, E., Valkó, O. (2021): Establishment gaps: biodiversity hotspots to support the colonization of target species in species-poor grasslands. Restoration Ecology 29(S1): e13135. doi: 10.1111/rec.13135

Kiss, R., Deák, B., Tóthmérész, B., Miglécz, T., Tóth, K., Török, P., Lukács, K., Godó, L., Körmöczi, Z., Radócz, S., Borza, S., Kelemen, A., Sonkoly, J., Kirmer, A., Tischew, S., Valkó, O. (2021): Zoochory on and off: A field experiment for trait-based analysis of establishment success of grassland species. Journal of Vegetation Science 32: e13051. doi: 10.1111/JVS.13051

Photo: Hungarian Academy of Sciences communication – Tamás Szigeti

News

Péter Batáry elected member of Academia Europea

Péter Batáry, DSc, landscape ecologist, scientific advisor of the Centre for Ecological Research and head of the Lendület Landscape and Conservation Ecology research group, has been elected to be a member of Academia Europaea.

The Academia Europaea is a non-governmental association acting as an Academy. Its mission is to promote excellence in the humanities, law, economics, social and political sciences, mathematics, medicine and natural sciences and technology. Founded in 1988, it currently has more than 5100 members, including several Nobel laureates.

Source: Academia Europaea membership

News

The resilience of aquatic ecosystems to heatwaves and their ability to recover from changes caused by temperature-induced stress

Researchers from the Institute of Aquatic Ecology of the ELKH Centre for Ecological Research (CER) led by Csaba Vad, conducted a study in an international collaboration to explore the resilience of aquatic ecosystems to the negative impacts of heatwaves. They also investigated whether dispersal from surrounding habitats, i.e., the arrival of other species, could accelerate ecosystem recovery. During their experiment on plankton communities in mesocosms, the researchers found that the heatwave drastically reduced the biomass of plankton due to the negative impact on primary consumer zooplankton, such as water fleas. Dispersal from surrounding habitats had limited effect in this study, somewhat positively influencing only the growth of phytoplankton. As a result of the heatwave, both the composition and trophic structure of the communities changed, which could have long-term implications for ecosystem functioning. The study presenting the results was published in one of the leading international ecological journals, Global Change Biology.

The increasingly frequent and intense heatwaves associated with global climate change pose a significant threat to biodiversity, ecosystem functioning, and the ecosystem services provided to humans. Consequently, it becomes crucial to understand the mechanisms that affect the resilience of communities in the face of extreme temperature events, including their resistance to temperature stress and their subsequent recovery. This knowledge is essential for improved prediction and mitigation of biodiversity loss and its far-reaching implications. Moreover, it enables the application of effective strategies to adapt to climate change.

In a research led by Csaba Vad, researcher at the Institute of Aquatic Ecology of CER, an international research group investigated whether connectivity through dispersal facilitates ecosystem adaptation to heatwave-induced stress (“spatial insurance hypothesis”). The study, conducted over a period of one and a half months, took place in artificial lakes known as mesocosms. In these experimental systems, the processes occurring in natural ecosystems can be modeled much more realistically compared to laboratory conditions. Moreover, they allow for the isolated examination of individual stressors and underlying mechanisms, which would not be feasible in natural habitats due to their complexity.

The Austrian WasserCluster Lunz research institute’s mesocosm system,
where the experiment was conducted

According to the results, the heatwave led to a decrease in plankton biomass, primarily due to its negative impact on zooplankton, such as water fleas. In the case of a natural lake, for example, this could lead to temporary reduction in food sources available for fish or even the development of algae blooms, as these small microscopic organisms play an important role in regulating algae levels. The effect of dispersal from surrounding habitats in this experiment was relatively minor, and it was only evident in the faster post-heatwave growth of phytoplankton. The results showed that the community biomass returned to the undisturbed level regardless of dispersal. However, the composition and trophic structure of the community changed, which could potentially result in long-term alterations in ecosystem functioning.

Based on the experiment, it can be concluded that even a short heatwave of about one week can alter the species composition and interactions within aquatic ecosystems, potentially leading to long-term consequences. These effects can be further aggravated by the fragmentation of ecosystems resulting from habitat loss, increasing spatial isolation of remaining habitats and reducing the dispersal of organisms. Ecologists urge for further long-term research to understand the impacts of heatwaves and develop possible adaptation strategies.

The research was carried out within the framework of the H2020 AQUACOSM project, with the support of H2020 AQUACOSM-plus and the National Multidisciplinary Laboratory for Climate Change.

Photos: Zsófia Horváth

Publication: 

Vad Cs. F., Hanny-Endrédi A., Kratina P., Abonyi A., Mironova E., Murray D. S., Samchyshyna L., Tsakalakis I., Smeti E., Spatharis S., Tan H., Preiler C., Petrusek A., Bengtsson M. M. & Ptacnik R. (2023). Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities. Global Change Biology 29: 3054–3071. (IF2021: 13.211 | SCimago2022: D1)

News

The Invasion Biology Division of the National Health Security Laboratory has been established with the leadership of CER as the new center for domestic research on biological invasion

The Invasion Biology Division of the National Health Security Laboratory (NHSL) has recently been established with the leadership of the ELKH Centre for Ecological Research (CER). The primary mission of the participating experts is to assess the level of threat posed by invasive species in Hungary, develop a comprehensive ecological framework to address the issue, and provide practical recommendations to decision-makers based on scientific findings, in order to support the development of effective invasion defense strategies. Additional consortium members of the project include the University of Pécs (UP), the ELKH Centre for Agricultural Research (ATK), the Hungarian University of Agriculture and Life Sciences (MATE), the University of Veterinary Medicine Budapest (UNIVET), and the ELKH Veterinary Medical Research Institute (ÁTKI).

The plant and animal life on Earth has evolved over millions of years. Populations were separated by oceans, mountain ranges, seas, and rivers, allowing each continent and their various geographic units to develop their unique biodiversity characteristics specific to that particular area. Throughout its history, humanity, especially during the age of great geographical discoveries, has intentionally or accidentally introduced and transported plant and animal species to areas where they were not originally native. In recent decades, globalization has led to a significant increase in the intentional introduction of non-native species for economic purposes, as well as the accidental introduction through transportation, travel, or tourism. Some of these species, once escaping human control, start spreading in their new habitats, causing harm to native flora and fauna. The introduction of new species leads to rearrangements in the ecological relationships among members of the original communities, resulting in damage to the composition and functioning of natural ecosystems, and the decline or extinction of numerous native species.

Articles on topics such as the naturalization of introduced plants began to appear as early as the 19th century. However, by the 20th and 21st centuries, the issue had reached such a magnitude that a new field of study, invasion biology or invasion ecology, emerged to address these questions.

Today, terrestrial ecosystems face a dual crisis of climate change and rapid biodiversity loss. One of the main causes of biodiversity loss, alongside systematic habitat destruction and fragmentation, is the spread of invasive species. The typical case of invasion phenomena occurs when a plant or animal species introduced for economic or aesthetic reasons, escapes from its breeding or cultivation area and becomes an “invasive species”, overwhelms the previously diverse native ecosystem. Examples of this include the planting of common milkweed (Asclepias syriaca) or giant goldenrod (Solidago gigantea) as bee pastures, which have caused severe degradation and destruction of our protected and natural grassland areas by today.

However, the range of invasion phenomena is much broader than that. Nowadays, we are familiar with numerous examples where introduced or spontaneously established species act as vectors, carrying new pathogens that can cause previously nonexistent diseases in the given area and potentially lead to epidemics. In recent years, for instance, several invasive mosquito and tick species have appeared in Europe, capable of transmitting various pathogens, including viruses and nematodes, that pose risks to both humans and domestic animals, causing a range of human diseases and conditions, as well as for example heartworm in dogs. The agricultural sector faces a new challenge with the impact of invasive plants on pollinator communities or the appearance and damage caused by invasive sucking pests, mites, and bugs, for example in vineyards and orchards, significantly reducing the efficiency of agricultural production.

Biological invasion is therefore a complex issue that not only directly affects biodiversity loss, but also has a direct impact on various segments of the economy and society, the decline of natural habitats, the reduction and disappearance of native species, the efficiency of agricultural and forestry practices, and ultimately, human health. It leads to the loss of natural and healthy environments and directly contributes to the emergence of new pathogens or allergens.

The severity of the impacts occurring on multiple levels is indicated by the fact that the European Union spends over 12 billion euros annually on combating invasive species and mitigating the damages caused by them, and this amount continues to increase year after year. According to the latest global assessment by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the number of invasive species per country has increased by 70 percent since 1970, and over one-third of the currently recorded invasive species have appeared for the first time in a biogeographic region outside their native range in the past four decades. Globally, Europe and North America have the highest number of invasive species, and Hungary is also considered an invasion hotspot. Hundreds of new species have emerged in the past century in the country, many of which have caused significant ecological changes.

The phenomena related to biological invasion are intensively studied by representatives of various disciplines, including ecologists, virologists, plant protection experts and medical professionals. However, there are still numerous unanswered questions in each subfield. Currently, it is not yet possible to predict invasive processes in the same way as, for example, different climate scenarios show the expected outcomes under varying conditions.

As part of the Széchenyi Plan Plus program, the Invasion Biology Division of the National Health Security Laboratory has recently been established with the support of project RRF-2.3.1-21-2022-00006. The Invasion Biology Division, operated by a consortium led by CER and comprising PTE, ATK, MATE, UNIVET, and ÁTKI, aims to assess and address the actual threat posed by invasive species by developing a unified ecological framework and providing effective practical solutions based on scientific findings.

During the research, experts map and document the appearance and spread of – what based on their societal impact are considered – key invasive species in Hungary, including invasive plants, mosquitoes, plant pests, and wildlife. Understanding the process and driving forces of invasion is crucial for comprehending the effects, predicting invasions, and developing defense strategies. The properties determining the spread success of invasive species, including the contribution of human mobility to their spread, are investigated integratively in experimental systems. The impacts of invasive species on native species, ecosystem functioning, and ecosystem services are also studied. To understand the social and economic consequences of invasion, participating experts collaborate with relevant stakeholders to examine the effects on agriculture, forestry, game management, as well as plant, animal, and human health. A key objective of the project is to develop new technologies based on research findings, using predictive models, artificial intelligence, and molecular methods, to identify and forecast critical invasive events. The development and testing of new methods for invasive species control are also part of the plan.

The members of the Invasion Biology Division of NHSL consider providing continuous comprehensive information on the scope of invasion and the actual level of risks to the wider public, as well as formulating recommendations for decision-makers to develop invasion defense strategies, as their key task.

News

Researchers do not recommend planting blanketflower in gardens due to its invasive potential

The researchers of the ELKH Centre for Ecological Research (CER) investigated the spread of the non-native great blanketflower in Hungary within the framework of the National Laboratory for Health Security project. The aim of the research was to evaluate the impact of the species on the local plant community and determine its invasive potential through its functional traits. Based on the results, the great blanketflower does not currently appear to be a strong ecosystem-transforming species, but there is a risk that due to climate change, the local environment in Hungary will become more suitable for it in the future, leading to strong speading and becoming invasive. Therefore, the researchers do not recommend planting blanketflower species in gardens. They also suggest surveying non-native ornamental plant populations, conducting long-term monitoring and a more detailed assessment of the traits that influence their spread. The publication presenting the results was published in the scientific journal NeoBiota.

Ornamental plants are one of the main sources of species becoming invasive. During their planting, they are introduced to new habitats where humans create favourable living conditions through irrigation and maintenance. Later, in natural habitats, they can easily occupy open niches created by human disturbances and the warming effects of climate change. The blanketflower has followed this path as well, and its ecological impacts were studied by researchers of CER along with several other new, potentially dangerous species within the recently initiated National Laboratory for Health Security project.

The great blanketflower and its relative, the Indian blanket, along with their hybrid, are globally planted ornamental plant species. Reports have already been made in several countries about the great blanketflower escaping from gardens and naturalizing in various new habitats, but its invasive behavior has been relatively unknown until now. However, it seems that in the past few decades, this species has found suitable habitats in Hungary and from a naturalized species it has become invasive in several locations. “Our aim was to map the distribution of the great blanketflower in Hungary, evaluate its impact on the local plant community, and determine the species’ invasive potential through its functional traits,” summarized Gabriella Süle, Phd, a assistant research fellow at CER.

Based on the distribution data collected here, the great blanketflower occurs in Hungary mainly as casual escapes yet. This species, which blooms profusely throughout the year and is extremely colorful, requires little to no care. Therefore, owners allow it to spread, and we can often see it occupying more and more space in front of gardens. However, it became naturalized in recent years, and invasive populations have also been found in significant numbers within the country. The species is mainly observed near gardens and disturbed habitats, but it has also appeared in natural and semi-natural grasslands. It successfully spreads in disturbed, species-poor, sandy, open habitats. Its spread affects the composition of the local plant community, reducing, for example, the species richness of local plants. Based on its functional traits, its well germination capacity, extremely long flowering period, the large absorbing and adhering surface provided by its roots, and its spread by grazing animals’ fur, mainly sheep, can promote its invasive spread. Currently, the great blanketflower does not appear to be a strong ecosystem-transforming species, but more attention needs to be paid to it because there is a risk that the local environment in Hungary will become increasingly suitable for it due to drier weather caused by climate change, leading to strong spread and becoming invasive, primarily in sandy soils.

“Due to all of these, we do not recommend planting blanketflower species in gardens, as they can easily escape and establish in natural plant communities. Furthermore, we suggest considering banning their distribution in seed mixes. To control invasive populations in natural habitats, there is a need to develop an effective eradication method” emphasized Gabriella Süle, Phd.
Assessing the great blanketflower and similar non-native ornamental plant populations, conducting long-term monitoring, and performing a more detailed evaluation of the traits influencing their spread would be important in order to prevent the escape of species planted in gardens into the natural habitats on time.

Assessing and managing the ecological, economic, and societal threats posed by invasive species similar to the great blanketflower is one of the focuses of the Division of Invasion Biology within the National Laboratory for Health Security project. The research is being carried out within the framework of the Széchenyi Plan Plus program with the support of the RRF-2.3.1-21-2022-00006 project.

Publication:
Süle G, Miholcsa Z, Molnár C, Kovács-Hostyánszki A, Fenesi A, Bauer N, Szigeti V (2023) Escape from the garden: spreading, effects and traits of a new risky invasive ornamental plant (Gaillardia aristata Pursh). NeoBiota 83: 43-69. https://doi.org/10.3897/neobiota.83.97325

Related link(s):

elkh.org

News

Researchers have revealed the multi-level effects of invasion on plant-pollinator communities

Researchers from the ELKH Centre for Ecological Research (CER) and Babeș-Bolyai University (BBE) in three recent papers have described the effects of twelve invasive plant species with different traits on vegetation (Fenesi et al. 2023), pollinator communities (Kovács-Hostyánszki et al. 2022), and the traits of pollinating insects (Szigeti et al. 2023). During their field studies they assessed and compared the plant and pollinator communities of invaded and semi-natural habitats in Hungary and Romania. In order to facilitate proper comparisons and conduct detailed exploration, the researchers employed uniform field methods while utilizing diverse ecological indicators, ranging from the height of indigenous vegetation, honeybee abundances, depth of flowers to tongue length of pollinator insects.

Bees and other pollinator species play an extremely important role in most terrestrial ecosystems, including agriculture. Increasingly, studies report the drastic decline of pollinating insects, one reason being the reduced availability of their food resources. The strong spread of invasive species is one of the five most important causes of biodiversity loss, that is why the Invasion Biology Division was established under the leadership of the Ecological Research Center within the National Laboratory for Health Security, where researchers investigate the complex effects of invasion. Where invasive plant species appear and are able to spread, they inundate and dominate the given area, reducing diversity and making habitats more homogeneous. In many cases, they also reduce the range of available flowers, thus helping some compatible pollinator species while displacing the food resources of others from the landscape. In general, it can be stated that the impacts of invasive plant species on native vegetation and pollinator insects are often varied and dependent on their specific traits.

Based on the research results, there is no universal effect of plant invasion, except for a few general patterns there are differences among invasive plant species in almost every ecological indicator studied. Perhaps the most important message is that as many invasive plant species and traits as there are, there can be a variety of effects on invaded plant-pollinator communities. The three publications highlight that the cover of invasive plant species strongly influences the composition, diversity, and height of the remaining native vegetation, among other factors. As the invasive plant species displaces native plants in a given area, fewer of the original or potential communities remain. Perennial invasive plant species have an even stronger negative impact on flower availability and pollinators than annual species. This is likely due to their stronger invasive capacity, dominance, different growth and flowering strategies, and presence in later successional stages of habitats. Timing is extremely important in plant-pollinator systems. Invaded areas are similar to crop fields such as rapeseed or sunflowers: during their blooming period, they provide significant amounts of food for the pollinating insects, while beyond of their flowering period, these areas are extremely poor in resources of pollinators. Where invasive plant species appear, they eventually become dominant. They cover the area with green vegetation mass for most of the year, but only bloom for a short period of time. As indicated by the studies, natural areas have more and more diverse resources along the year. The researchers also found important and interesting relations when comparing the traits of invasive flowers and the traits of wild bees. For example, the sites invaded by two invasive species with deep flowers had more long-tongued and also larger-bodied bees, while a species with shallow flowers had more smaller-bodied bees. This indicates a strong size determination between flowers and their pollinators, meaning that the invasion of a particular trait (such as deep flowers in invasive plants) affects the functional characteristics of the remaining pollinator community in the invaded area (i.e., only long-tongued pollinators that can feed on deep flowers will remain).

Proper nature conservation management of (semi)natural habitats and effective control of invasive plant species are important for the protection of pollinators, but some invasive plants can also provide valuable foraging resources for pollinator insects. Therefore, instead of uniformly eradicating all invasive species, it is recommended to consider the best approach on a case-by-case and location-specific basis, taking also into account the needs of protected pollinator insects. For example, efforts to combat plant invasion could incorporate the nutritional requirements of pollinators. Some of the costs associated with invasive plant eradication could be redirected towards providing alternative nutrition sources, such as sowing native seed mixes in or in the neighborhood of invaded areas. Overall, the factors and impacts important in the plant-pollinator systems are complex and interrelated, hence further detailed studies are needed to uncover the specific relationships between species and to develop effective conservation solutions.

Publications:

Fenesi, A., Botta-Dukát, Z., Miholcsa, Zs., Szigeti, V., Molnár, Cs., Sándor, D., Szabó, A., Kuhn, T., Kovács-Hostyánszki, A. (2023). No consistencies in abundance-impact relationships across herbaceous invasive species and ecological impact metrics. Journal of Ecology. DOI: 10.1111/1365-2745.14085

Kovács-Hostyánszki, A., Szigeti, V., Miholcsa, Zs., Sándor, D., Soltész, Z., Török, E., Fenesi, A. (2022). Threats and benefits of invasive alien plant species on pollinators. Basic and Applied Ecology, 64:89–102. DOI: 10.1016/j.baae.2022.07.003

Szigeti, V., Fenesi, A., Botta-Dukát, Z., Kuhlmann, M., Potts, S. G., Roberts, S., Soltész, Z., Török, E., Kovács-Hostyánszki, A. (2023). Trait-based effects of plant invasion on floral resources, hoverflies and bees. Insect Conservation and Diversity. DOI: 10.1111/icad.12640

Related link(s):

elkh.org

Other publications on this topic:

News

Invasion Biology website launched

The website of the Division of Invasion Biology, part of the National Laboratory for Health Security, has been launched at https://invaziobiologia.hu/.

The main mission of the Division is to investigate the ecological causes and consequences of the establishment and spread of invasive species through a unified concept, which requires a systemic and cross-disciplinary investigation of the processes at the system level and in distant specialist areas. In total, 16 research groups from six institutions are involved in this work, and one of the main aims of the website is to present the groups and the research topics they investigate, as well as to provide regular updates on the latest scientific publications and professional events published within the Division of Invasion Biology. We consider it important to make our latest scientific results in the field of invasion biology easily accessible in one place and in a suitable format for both professional and civil audiences, thus ensuring their further exploitation.

News

Tree plantations are weak substitutes for near natural forests

Over the past two centuries, in Hungary and globally, the area of natural and semi-natural forests shrunk dramatically, while at the same time some of the economic functions of forests have been taken over by tree plantations, which cover a significant area (3.8% of Europe’s forests but in Hungary in some region e.g. Kiskunság this proportion exceeds 80%). Plantations are intensively managed forests, mainly composed of one or two tree species, which mainly perform economic functions (e.g. timber and firewood production). There is a long-standing controversy about the evaluation of tree plantations, depending on whether the economic or the nature conservation values of the forest are regarded as a primary role. While tree plantations can also provide some important ecosystem services alongside the economic benefits of timber production, in these ‘forests’ taxonomic diversity decreases radically or the plantations become a hot spot for biological invasions.

A paper of the researchers of the University of Szeged and the Centre for Ecological Research, published in Forest Ecology and Management, represents a significant step forward in the more accurate ecological assessment and evaluation of Hungarian tree plantations. The sample area was the Kiskunság Sand Ridge, a lowland region in the center of the Pannonian biogeographic region between the rivers Danube and Tisza in Hungary, where semi-natural forests survived almost exclusively in the forest-steppe mosaics of protected areas, but tree plantations are widespread in the landscape. The analysis compared four types of forest habitat: near-natural poplar forest Junipero-Populetum albae and three types of tree plantation: native deciduous white poplar (Populus alba), the non-native deciduous black locust (Robinia pseudoacacia), and the non-native evergreen Austrian pine (Pinus nigra) plantation. The study assessed the diversity of the vegetation, not only in terms of species diversity, but also in terms of functional and phylogenetic diversity indicators, i.e., how diverse the vegetation is in each type in terms of plant traits (pollination type, seed dispersal, life form, flowering date, etc) and phylogenetic lineages. Each type of habitat was assessed from an ecological and conservation point of view based on the occurrence of protected, endemic and red-listed species, i.e. the rarest and most valuable species from a conservation point of view.

László Erdős, a research fellow at the Centre for Ecological Research and one of the lead authors of the paper, says that each forest type has a unique species composition, but semi-natural forests are the richest in native species, while tree plantations are dominated by weeds and non-native species. The semi-natural forest is also characterized by the frequent occurrence of native shrub species such as Berberis vulgaris, Ligustrum vulgare, and Rhamnus catharticus. In the case of tree plantations, shrubs disappear as a result of the forestry activities (mechanical site preparation and mechanical weed control) to protect the saplings. The planted tree species also have an impact on the forest floor, e.g. in Robinia pseudoacacia stands weed species that tolerate high nitrogen levels appear, or in pine forests, the deep layer of slowly decaying leaf litter results in a special species composition.
The analysis also showed that low taxonomic diversity in tree plantations does not necessarily imply low functional or phylogenetic diversity, as several different diversity indicators provide a more complex characterization of the plant diversity of a habitat. Among the tree plantations, native poplar plantation and pine forest were found to be more favorable habitats for plant diversity than black locust stands. Black locust was also the most degraded of the habitats studied in terms of naturalness indicators.

The study provides a more accurate assessment of the different types of tree plantations in the region and has important implications for forest management and conservation. From an ecological and conservation point of view, the remnants of semi-natural forest are much more valuable than any of the tree plantations, and therefore conservation and restoration programs should focus primarily on these areas. Of the tree plantations, the planting of native white poplar (Populus alba) should be preferred when further tree plantations are to be established. In the longer term, reducing the area of black locust and pine plantations is inevitable, and the establishment of a mosaic of grassland and forest, in keeping with the semi-arid climate of the Kiskunság, is appropriate for the forest-steppe region.

Publication:
Khanh Vu Ho, György Kröel-Dulay, Csaba Tölgyesi, Zoltán Bátori, Eszter Tanács, Miklós Kertész, Péter Török, László Erdős: Non-native tree plantations are weak substitutes for near-natural forests regarding plant diversity and ecological value Forest Ecology and Management, Volume 531. 2023.
https://doi.org/10.1016/j.foreco.2023.120789.

Other publications on this topic:

News

Waterbird guilds predict environmental attributes of aquatic ecosystems

Alkaline soda pans of Hungary are special representatives of inland saline waters in the interior of the continents. The largest number of soda pans in Eurasia is found in the Carpathian Basin, and these lakes are also important resting and feeding areas for migratory birds in the European-African bird migration routes. Evidence is mounting that globally, aquatic habitats and waterbird populations are being rapidly declined by the land-use and land cover changes of recent decades (drainage, run-off), and climate change: rising temperatures and changing rainfall patterns. Waterbird populations play an important role in trophic- and host-parasite networks, and their cultural and recreational role is also important, but as bird populations and habitats decline, these ecological services are also declining.

Emil Boros, Senior Research Fellow at the Centre for Ecological Research, Institute of Aquatic Ecology, has been studying the interaction between waterbird populations and soda pans for many years. In an earlier publication in the Science of the Total Environment they found that waterbirds contribute high phosphorus loading (P) to the shallow saline lakes through their droppings, i.e. birds act as vectors of external phosphorus sources, a process called guanotrophication (bird-induced nutrient enrichment). Waterbirds, such as large-bodied herbivores (goose and duck species) and medium-bodied omnivores (e.g. gulls) have been shown to be 64% responsible for the extremely high phosphorus content of natural soda pans. However, it was also found that, the hypertrophic state of water was in contradiction with the limited primary production of natural soda pans due to the characteristics of the lakes: shallow water depth, high alkalinity (PH ≥ 9), and intermittent hydrological cycle.

Lake Balkhash

In a further investigation about the interaction between inland saline aquatic ecosystems and waterbirds the aim was to show whether the ecological/trophic attributes of saline water bodies could be predicted on multi spatial-scales by different groups (guilds) of waterbirds. Also published in the prestigious journal Science of the Total Environment, Emil Boros and colleagues studied a vast area of 1700 km by 1000 km at different spatial scales in the steppe and semi-desert region of Kazakhstan, where 63 sample area were selected. Nearly 100 waterbird species occurred in the sample areas and were classified into three groups according to their role in nutrient cycling and nutrient turnover: net-importers (large herbivores e.g. geese, cranes), importer-exporters (omnivorous ducks and gulls) and net-exporters (various herbi-, omni- and piscivorous species), based on Boros’s classification method. The abundance, biomass and diversity of these bird groups (guilds) were compared with the attributes of the inland waters on multi spatial scales e.g. water depth, chlorophyll content, and at larger spatial scales, with the land cover data found in the 1 and 10 km radius around the ponds e.g. grassland or agricultural land.

Their results showed that the occurrence of the above waterbird groups was strongly correlated with the attributes of the saline aquatic ecosystems on multi-spatial scale. Water cover and salinity are the main attributes predicting of the type of bird group that occurs in a given environment. The importer-exporter and net exporter bird groups showed positive correlations with productivity metrics and water depth of the waters, while the importers were predicted by the surrounding pond environment e.g. grassland.
The practical significance of this study is that it quantifies this ecosystem services provided by waterbirds, their role in nutrient cycling, which is essential for systematic monitoring and habitat management. The classification system and methodology described in this study can be used to estimate certain environmental attributes of inland water bodies for large geographic regions by counting waterbird populations. In the future, this will provide an opportunity to use birds to estimate ecosystem function and services of aquatic systems, which in turn will require further methodological studies.

Publications:

Emil Boros, Zarina Inelova, Zsuzsanna Lánczos, Zsolt Végvári: Waterbird guilds predict environmental attributes of inland saline aquatic ecosystems on multi-spatial scales,
Science of the Total Environment, Volume 855, 2023.
https://doi.org/10.1016/j.scitotenv.2022.158845.
https://www.sciencedirect.com/science/article/pii/S0048969722059447

Emil Boros, Anita Takács, Péter Dobosy, Lajos Vörös: Extreme guanotrophication by phosphorus in contradiction with the productivity of alkaline soda pan ecosystems,
Science of the Total Environment, Volume 793, 2021.
https://doi.org/10.1016/j.scitotenv.2021.148300.
https://www.sciencedirect.com/science/article/pii/S0048969721033714

Photos: Emil Boros – Red-necked Phalarope and Lake Balkas

News

Inaugural lecture by András Báldi at the Hungarian Academy of Sciences

ANDRÁS BÁLDI, Corresponding Member of the Hungarian Academy of Sciences, Research Professor at the Centre for Ecological Research, held his inaugural lecture on 14 February 2023 in the Great Hall of the Hungarian Academy of Sciences.
Title: Biodiversity and ecosystem services: from fieldwork to policy

Biodiversity has declined over the past decades. Recognition and understanding the patterns and processes of ecosystems and thus halting their degradation is essential for human-wellbeing. One of the main reason of biodiversity loss is the transformation of original natural habitats leaving only small isolated patches of remnants in human-dominated landscapes. These patches of habitats are subject to the species-area relationship, one of the few laws of ecology. The proportion of interior and edge habitats is also decreasing. All these are reflected in the presence of species and individuals, but natural patterns and processes can be affected by human interference. Patches of natural habitats are surrounded by human-dominated land, mostly agricultural land which may still have significant biodiversity values. Fundamental questions remain to be answered, such as what is the impact of farming and landscape structure on biodiversity and the ecosystem services? Research results ensure essential information to nature-friendly management practices in order to help effective conservation of biodiversity. The next step towards practice is to integrate research results into policy. This step involves a number of processes and institutions in which researcher’s participation is a key.
András Báldi presented the existence of human influence overriding the species-area relationship, and the positive but species-specific effect of habitat edges on bird abundance and the negative effect of habitat edges on the survival of nestlings. Over many years, the biodiversity of many agricultural habitats has been studied, including plants, grasshoppers and related insects , ground beetles, bugs, cicadas, bees, wasps, birds, and has shown that the species richness of the natural habitat in Hungary is significantly higher than in other intensively farmed countries. To conserve this richness, context-dependent management – e.g. local habitat, landscape, taxon – is required. In their landscape-scale experiments launched in recent years, the most effective management options are investigated by creating wildflower plots and overplanting fallow land, from which both the farmer and biodiversity can benefit. Finally, he outlined how research results can be translated into policy and decision-making and what is the role of researchers in it at international level.
Photo: mta.hu/ Tamás Szigeti

News

Alkaline soda wetland restoration in Apaj-Puszta on the World Wetlands Day

World Wetlands Day is celebrated each year on 2nd February to raise awareness about wetlands. This day also marks the anniversary of the Convention on Wetlands, which was adopted as an international treaty in Ramsar, Iran, on this day in 1971. To mark this occasion, the Ministry of Agriculture organised a celebration event in Dömsöd on 2nd February 2023, jointly with the Szomor Eco-Farm and the Hungarian National Committee of the Ramsar Convention.
The Centre for Ecological Research was represented by Dr. Emil Boros, Senior Research Fellow of the CER Institute of Aquatic Ecology and member of the Hungarian National Committee of the Ramsar Convention. In a joint presentation with Dezső Szomor, – ecological farmer and head of Szomor Ecofarm (who is also a member of the Ramsar Committee), – he evaluated the reconstruction over the past 30 years of the Apaj alkaline soda wetland of international importance, which is part of the Kiskunság National Park and registered as a Ramsar site and presented the related LIFE Nature project.
Based on his decades of research the ecologist presented in detail the results of the 500 ha experimental wetland restoration project established and run by Szomor Ecofarm in the Lower Szúnyogi Meadow in the Apaj Basin.
“The essence of this scheme is to reconstruct the functioning of the floodplain wetland system of the ancient Danube valley plain in accordance with the current landscape conditions, where sustainability is ensured by the fish pond system connected to the water system and operated by Szomor Eco-farm. The conservation-ecological specificity of the water system is that the fishponds and natural wetlands fed by the Danube water are directly supplied with water through local gravity flow systems below the surface, which indirectly ensures the adequate quality and quantity of water supply for the alkaline soda wetlands. The Apaj-Puszta wetland restoration project is therefore an important reference site in the region for the restoration of alkaline soda wetland habitats, which are unique on a global scale. In addition to flooding, the Szomor Eco-farm is implementing the conservation management of the temporary alkaline soda wetland through extensive grazing of buffalo and Hungarian grey cattle,” said Emil Boros.

Other publications on this topic:

News

New Handbook about Invasive Animal Species in Hungary

After a gap of nearly two decades, the first comprehensive summary volume on all invasive animal taxa in Hungary has been published. The publication is available (also in English) in the Rosalia Handbooks series of the Danube-Ipoly National Park Directorate.

Despite the fact that the spatial expansion of invasive alien animal species is now a major threat to our aquatic and forest ecosystems, there has been no book that would have started to put even a species lists together, let alone gather all the knowledge available from researchers and experts concerning different taxa. This enormous work was carried out by 36 specialists, experts in each taxonomic group. Several researchers from the Centre for Ecological Research have co-authored the volume, with Péter Borza co-authoring the chapter on Peracarida, and Zoltán Soltész, Zsolt László Garamszegi and Edina Török co-authoring the chapter on Diptera species.

In this volume, the authors present species that are primarily cause an ecological problem in their new habitat, but as the descriptions show, there are several species that do have a major or even catastrophic economic impact. The book contains detailed descriptions of the 118 species that have already occur in Hungary or will inevitably do so in the near future, as well as brief descriptions of 4 amphibian and 32 species of terrestrial snails. A general conclusion of the present volume is that our natural waters are especially vulnerable as more than half of the species dealt with within the book occur in aquatic habitats.

Photo: Imre Potyó (Chaetogammarus ischnus)

Source: Rosalia Handbooks 5. Invasive Animal Species in Hungary

News

András Báldi was elected Head of the Section of Organismic and Evolutionary Biology of Academia Europaea

András Báldi, research professor of the Centre for Ecological Research and a corresponding member of the Hungarian Academy of Sciences, has been elected Head of the Organismic and Evolutionary Biology Section of the Life Sciences Division of the Academia Europaea, a leading European research community.
Founded in 1988, the Academia Europaea (AE) (European Academy of Sciences) has around 5,000 members, including 83 Nobel laureates. The AE’s objectives include promoting and disseminating the results of European research, fostering interdisciplinary and international research cooperation, and raising public awareness of scientific results.
“The Academia Europaea resembles the academies of the old days, the “learned societies”. It has a staff of just a few people, so every activity initiated and carried out by its members. A series of seminars, conferences and peer-reviewed papers are indicative of this. The Section of Organismic and Evolutionary Biology is one of the smallest, with 139 members. However, it has a total of eight distinguished Hungarian members from several institutions in the country” – told András Báldi to mta.hu.
András Báldi’s term of office is three years from 1 January 2023. He said that his election was partly due to his experience in leading international societies and partly to the fact that has practice in mediating between science and policy. The latter is also important because one of the main objectives of the section is to provide useful advice to EU decision-makers.
“To this end, my aim is to complement the membership by involving European leaders in highlighted research field,” he said. “In addition to professional excellence, we also take into account the need to strike the right balance between gender, countries and disciplines. In other words, it is not mechanistically the science metrics that matter, but whether the candidate excels in their particular situation.”
András Báldi said there is a sense that climate change and the crisis of biodiversity loss are increasing the weight of ecology, both in scientific research and in international scientific organisations.
He cited as an example the fact that the Global Risks report for the World Economic Forum in Davos included climate change and biodiversity loss among the six environmental problems that are estimated to be the greatest threats over the next 10 years. “A working group on environmental sustainability has also been set up within Academia Europaea.”

Source: mta.hu - Magyar akadémikus az Academia Europaea Organizmus- és Evolúcióbiológiai Szekciójának élén - 2023-01-24

News

Traditional knowledge is local, but pastoralist’s principles are global

The understanding and importance of traditional ecological knowledge systems is increasingly recognised worldwide as a means to develop more effective policies in today’s crises, e.g. in nature conservation or grassland management. Zsolt Molnár, scientific advisor at the Centre for Ecological Research, has been researching the traditional ecological knowledge of pastoralists for more than 20 years. His Iranian student is the first author of a joint publication with European, Asian and African authors in the Journal of Environmental Management.

Unusual for academic publications, the publication is a collaboration between researchers and practising pastoralists. “Since the holders of traditional knowledge are mostly not researchers but herders, farmers, fishermen, when a researcher works with their knowledge, the ethical approach is for these ‘non-scientific’ professionals to also become co-authors. After all, the new publication is the result of collective thinking, knowledge co-production. Such recognition of traditional knowledge is now, fortunately, becoming more and more common” – said Zsolt Molnár.

Herders often graze in landscapes that are less suitable for crop production due to climatic extremes or soil conditions. Traditional grazing systems exist in very different natural environments, such as tundra, steppe, savannah, desert, mountainous areas. Pastoralist communities have locally relevant, multi-generational traditional ecological knowledge of pasture plants on which they base the utilisation of their pastures.

During the research, the authors collected the knowledge of herders on pasture (and hay meadow) plants and plant-livestock interactions in a review article. They analysed 24 of the 372 relevant scientific articles and 18 of the 105 videos about herders and their pastures. In addition, semi-structured interviews were conducted with practising herders in Iran, Mongolia, Kenya, Poland and Hungary to discuss the findings and conclusions.

Thirty-five indicators were identified in the scientific papers and documentaries of how herders ‘see’ forage plants. These indicators described both the botanical features of the plants and the livestock behaviour during grazing, as well as the impact of forage plants on the condition and health of livestock. The indicators were used by herders in management decisions to optimise grazing, the availability and quality of fodder grasses, and the appropriate way of grazing. Although herders around the world are very different, their knowledge of pasture grasses and the relationship between livestock and forage plants is remarkably similar. The researchers identified ten general principles that were common globally, almost regardless of location or habitat type. Such a global synthesis has never been done before.

Perhaps the most important key global principle is the livestock-centred approach explained Zsolt Molnár: “herders see plants through the “mouth of the livestock”. While in the pasture together, herders and livestock reciprocally learn from each other. The condition of the pasture grasses is closely monitored by the herders, who graze each patch in a targeted way, while often planning livestock movements with surprisingly strategic attention to detail, on a daily, weekly and monthly basis. The aim is to make the best use of the available grass as a resource and to ensure also the long-term ‘well-being’ of the pastures (see more details in this film). The lexical details of this knowledge are of course highly specific to the place, but the principles are globally general. You might ask that it’s good, but why is it important? It may come as a surprise, but even in cases where the state or a national park develops supporting measures and regulatory systems for pastoral grazing, it is easy to develop rules that have harmful effects. Because decision-makers often do not sufficiently understand the pastoral world, which is so different from our own. Our article points out that there are general principles that we can build on, and that we can take into account to create better policies, both ecologically and culturally.”

Researchers hope that a better understanding of pastoralists’ knowledge of grasslands and livestock grazing will help not only to maintain the biodiversity and economic benefits of less productive semi-natural grasslands, but also to innovatively preserve the traditional pastoral way of life.

News

Co-seeding grasses and forbs supports restoration of species-rich grasslands and improves weed control in ex-arable land

The members of the ‘Lendület’ Seed Ecology Research Group of the Centre of Ecological Research followed the vegetation dynamics of artificially created grassland patches for several years. The researchers found that in the course of grassland-restoration the efforts at the beginning pay off: the simultaneous sowing of grasses and forbs in fallow lands leads to the development of species-rich grassland communities and efficient weed control.
The aim of ecological restoration is to recreate something lost or deteriorated. Grassland restoration aims to recreate grassland ecosystems and communities. In many cases recreation of the original ecosystem is not a possibility, but restoration still can help to cover landscape scars created by human activities. Restored grasslands not only improve landscape aesthetics but offer many different ecosystem services as well (e.g., forage for the livestock, nectar for pollinators, effective carbon capture and storage, and soil erosion control).
When grassland restoration is done with seed sowing, the success of restoration depends on many factors, such as the identity of sown species, the timing of sowing, the quantity, quality and proportion of sown seeds. In the current study the researchers aimed to find the best timing to sow grasses and forbs to achieve the highest possible species richness, to enhance forb-establishment and to hamper weed encroachment.
„The matrix of the grasslands is composed by grasses. Previous works found that sowing grass seeds certainly results in a closed grass sward within a few years, and also hampers weed encroachment. That is why grass sowing is preferred in landscape-scale restoration works. But it also has its feedbacks: the new grassland will be species-poor, as the closed grass sward hampers the establishment of other grassland species.” – explained Réka Kiss, the first author of the manuscript published in the Nature- Scientific Reports.
To create species-rich grasslands the use of diverse forb seed mixtures is needed. However, the compilation or production of such seed mixtures requires more efforts (seeds of more species are needed in good quality and high quantity). Due to these reasons diverse seed mixture is less likely to be used in the early stages of restoration. In later stages, however, it will need more effort from the practitioners to secure the successful establishment of species.
„We were curious of the most suitable timing: If we want to sow both grasses and forbs in a fallow for a species rich grassland, which is the time-lag when with the least effort we can achieve the most?” – explained Réka Kiss – „At the beginning of the experiment we created 36 patches in a recently abandoned land. We sow exclusively grass seeds, exclusively diverse forb seed mixture (20 species) or both of them into the patches. When we combined the grass with the forb seed mixture we sown them simultaneously (at the same time), or the diverse seed mixture was sown with a delay of 1, 2 or 3 years.”
Following the development of the patches for several years the researchers found that the best results were achieved when seeds were sown simultaneously, without time-lag. In such patches the species richness of species was the highest, the weeds were less successful and the establishment success of sown forb species was the highest. This is the most cost-effective and most successful method among the studied sowing regimes. If simultaneous sowing is not a possibility, sowing forbs one year later than grasses is still effective. However, after one year the advantage received by grasses cannot be outcome by the forbs, their successful establishment in later stages can be promoted only by active interventions.

Source: nature.com - Co-seeding grasses and forbs supports restoration of species-rich grasslands and improves weed control in ex-arable land - 2022-12-08

News

Tamara Szentiványi wins AXA Fellowship

Tamara Szentiványi, a research fellow in the Evolutionary Ecology Research Group of the Centre for Ecological Research, has been awarded a two-year AXA Fellowship research grant.
Since its launch in 2008, the AXA Research Fund has supported transformative scientific research on major global risks and the dissemination of research results. The Fund supports projects in the fields of health, environment, new technologies and socio-economic issues. The AXA Research Fund’s Scientific Panel is currently supporting eight research projects in the Field of Climate Change and Health, including Dr. Tamara Szentiványi’s project on „Effects of climate change on the eco-epidemiology of zoonotic arbovirus infection in avian hosts”.
In her awarded research project, Dr. Tamara Szentiványi will analyse the current distribution and public health risk of avian arboviruses, which can spread zoonotic diseases, and improve current surveillance methods to monitor vector-borne diseases.