News

Assembly Theory links physics and evolution

An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how evolution and complexity emerge in nature. This new work on “Assembly Theory,” was published on October 4th in Nature.

As Dániel Czégel, the co-first author of the paper from Arizona State University and the Institute of Evolution at the Centre for Ecological Research in Budapest explained, “we have a language for physics, a language for chemistry, and a language for biology and evolution, but they are almost mutually incomprehensible, like as if we were at the early days of Babel. This makes the transition between them very difficult to study. We need something like a lingua franca of medieval port towns, to bridge cultures and languages. But these lingua francas often turn to fully developed languages, separate from their ancestors. Assembly theory is neither physics or chemistry or biology but a mathematical language to talk about historically contingent systems, systems where the existence of current forms are strongly determined by what existed in the past, like the products of biological or technological evolution. It turns out that a coordinate system for such complex objects are nothing like a coordinate system in physics, but it’s more like a space determined by combinatorics and recursivity. The most peculiar thing is that an object is not a point but a series of causes and effects, like a story of the origin of the object. And it’s not even the “real” history, but a fictional one, like an origin myth, but it’s mathematically well-defined within the assembly universe. It’s a counterfactual causal history. But then when we treat objects as their own fictional origin story, we can start to talk about the entangled web of stories of all objects and measure things like the amount of selection and historical contingency that caused those objects to exist. It’s a bit like the particle-wave duality of quantum physics, but for complex objects: sometimes it’s better to think of them as three dimensional structures, sometimes as interrelated construction histories. We have to speak the language of this coordinate system if we assume that life that we’d like to make in the lab or life elsewhere in the universe are not like ours, chemically.”